Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Extremophiles ; 28(1): 7, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062175

RESUMEN

Topoisomerases are crucial enzymes in genome maintenance that modulate the topological changes during DNA metabolism. Deinococcus radiodurans, a Gram-positive bacterium is characterized by its resistance to many abiotic stresses including gamma radiation. Its multipartite genome encodes both type I and type II topoisomerases. Time-lapse studies using fluorescently tagged topoisomerase IB (drTopoIB-RFP) and DNA gyrase (GyrA-RFP) were performed to check the dynamics and localization with respect to DNA repair and cell division under normal and post-irradiation growth conditions. Results suggested that TopoIB and DNA gyrase are mostly found on nucleoid, highly dynamic, and show growth phase-dependent subcellular localization. The drTopoIB-RFP was also present at peripheral and septum regions but does not co-localize with the cell division protein, drFtsZ. On the other hand, DNA gyrase co-localizes with PprA a pleiotropic protein involved in radioresistance, on the nucleoid during the post-irradiation recovery (PIR). The topoIB mutant was found to be sensitive to hydroxyurea treatment, and showed more accumulation of single-stranded DNA during the PIR, compared to the wild type suggesting its role in DNA replication stress. Together, these results suggest differential localization of drTopoIB-RFP and GyrA-RFP in D. radiodurans and their interaction with PprA protein, emphasizing the functional significance and role in radioresistance.


Asunto(s)
Girasa de ADN , Deinococcus , Girasa de ADN/genética , Girasa de ADN/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Daño del ADN , Reparación del ADN
2.
Microbiol Spectr ; : e0314122, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744915

RESUMEN

DivIVA is a member of the Min family of proteins that spatially regulates septum formation at the midcell position and cell pole determination in Bacillus subtilis. Deinococcus radiodurans, a Gram-positive coccus-shaped bacterium, is characterized by its extreme resistance to DNA-damaging agents, including radiation. D. radiodurans cells exposed to gamma radiation undergo cell division arrest by as-yet-uncharacterized mechanisms. divIVA is shown to be an essential cell division gene in this bacterium, and DivIVA of D. radiodurans (drDivIVA) interacts with genome segregation proteins through its N-terminal region. Earlier, RqkA, a gamma radiation-responsive Ser/Thr quinoprotein kinase, was characterized for its role in radioresistance in D. radiodurans. Here, we showed that RqkA phosphorylates drDivIVA at the threonine 19 (T19) residue. The phospho-mimetic mutant with a mutation of T19 to E19 in DivIVA (DivIVAT19E) is found to be functionally different from the phospho-ablative mutant (DivIVAT19A) or the wild-type drDivIVA. A DivIVAT19E-red fluorescent protein (RFP) fusion expressed in the wild-type background showed the arrest in the typical dynamics of drDivIVA and the loss of its interaction with the genome segregation protein ParA2. The allelic replacement of divIVA with divIVAT19E-rfp was not tolerated unless drDivIVA was expressed episomally, while there was no phenotypic change when the wild-type allele was replaced with either divIVAT19A-rfp or divIVA-rfp. These results suggested that the phosphorylation of T19 in drDivIVA by RqkA affected its in vivo functions, which may contribute to the cell cycle arrest in this bacterium. IMPORTANCE Deinococcus radiodurans, a radioresistant bacterium, lacks LexA/RecA-mediated DNA damage response and cell cycle regulation as known in other bacteria. However, it adjusts its transcriptome and proteome upon DNA damage. In eukaryotes, the DNA damage response and cell cycle are regulated by Ser/Thr protein kinases. In D. radiodurans, we characterized a gamma radiation-responsive Ser/Thr quinoprotein kinase (RqkA) that phosphorylated DNA repair and cell division proteins in this bacterium. In previous work, the effect of S/T phosphorylation by RqkA on activity improvement of the DNA repair proteins has been demonstrated. This study reports that Ser phosphorylation by RqkA attenuates the function of a cell polarity and plane of cell division-determining protein, DivIVA, and its cellular dynamics in response to DNA damage, which might help to understand the mechanism of cell cycle regulation in this bacterium.

3.
mBio ; 13(6): e0174222, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36300930

RESUMEN

Filament temperature-sensitive mutant K (FtsK)/SpoIIIE family proteins are DNA translocases known as the fastest DNA motor proteins that use ATP for their movement on DNA. Most of the studies in single chromosome-containing bacteria have established the role of FtsK in chromosome dimer resolution (CDR), connecting the bacterial chromosome segregation process with cell division. Only limited reports, however, are available on the interdependent regulation of genome segregation and cell division in multipartite genome harboring (MGH) bacteria. In this study, for the first time, we report the characterization of FtsK from the radioresistant MGH bacterium Deinococcus radiodurans R1 (drFtsK). drFtsK shows the activity characteristics of a typical FtsK/SpoIIIE/Tra family. It stimulates the site-specific recombination catalyzed by Escherichia coli tyrosine recombinases. drFtsK interacts with various cell division and genome segregation proteins of D. radiodurans. Microscopic examination of different domain deletion mutants of this protein reveals alterations in cellular membrane architecture and nucleoid morphology. In vivo localization studies of drFtsK-RFP show that it forms multiple foci on nucleoid as well as on the membrane with maximum density on the septum. drFtsK coordinates its movement with nucleoid separation. The alignment of its foci shifts from old to new septum indicating its cellular dynamics with the FtsZ ring during the cell division process. Nearly, similar positional dynamicity of FtsK was observed in cells recovering from gamma radiation exposure. These results suggest that FtsK forms a part of chromosome segregation, cell envelope, and cell division machinery in D. radiodurans. IMPORTANCE Deinococcus radiodurans show extraordinary resistance to gamma radiation. It is polyploid and harbors a multipartite genome comprised of 2 chromosomes and 2 plasmids, packaged in a doughnut-shaped toroidal nucleoid. Very little is known about how the tightly packed genome is accurately segregated and the next divisional plane is determined. Filament temperature-sensitive mutant K (FtsK), a multifunctional protein, helps in pumping the septum-trapped DNA in several bacteria. Here, we characterized FtsK of D. radiodurans R1 (drFtsK) for the first time and showed it to be an active protein. The absence of drFtsK causes many defects in morphology at both cellular and nucleoid levels. The compact packaging of the deinococcal genome and cell membrane formation is hindered in ftsK mutants. In vivo drFtsK is dynamic, forms foci on both nucleoid and septum, and coordinates with FtsZ for the next cell division. Thus, drFtsK role in maintaining the normal genome phenotype and cell division in D. radiodurans is suggested.


Asunto(s)
Deinococcus , Proteínas de Escherichia coli , Deinococcus/genética , Deinococcus/metabolismo , Proteínas Bacterianas/metabolismo , División Celular , Plásmidos , Segregación Cromosómica , Escherichia coli/genética , Proteínas de la Membrana/metabolismo , Proteínas de Escherichia coli/metabolismo
4.
Crit Rev Biochem Mol Biol ; 56(5): 482-499, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34162300

RESUMEN

The role of guanine quadruplexes (G4) in fundamental biological processes like DNA replication, transcription, translation and telomere maintenance is recognized. G4 structure dynamics is regulated by G4 structure binding proteins and is thought to be crucial for the maintenance of genome integrity in both prokaryotic and eukaryotic cells. Growing research over the last decade has expanded the existing knowledge of the functional diversity of G4 (DNA and RNA) structures across the working models. The control of G4 structure dynamics using G4 binding drugs has been suggested as the putative targets in the control of cancer and bacterial pathogenesis. This review has brought forth the collections of recent information that indicate G4 (mostly G4 DNA) roles in microbial pathogenesis, DNA damaging stress response in bacteria and mammalian cells. Studies in mitochondrial gene function regulation by G4s have also been underscored. Finally, the interdependence of G4s and epigenetic modifications and their speculated medical implications through G4 interacting proteins has been discussed.


Asunto(s)
G-Cuádruplex , Animales , ADN , Epigénesis Genética , Regulación de la Expresión Génica , ARN
5.
J Bacteriol ; 203(15): e0016321, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031039

RESUMEN

In rod-shaped Gram-negative bacteria, FtsZ localization at midcell position is regulated by the gradient of MinCDE complex across the poles. In round-shaped bacteria, which lack predefined poles, the next plane of cell division is perpendicular to the previous plane, and determination of the FtsZ assembly site is still intriguing. Deinococcus radiodurans, a coccus bacterium, is characterized by its extraordinary resistance to DNA damage. DivIVA, a putative component of the Min system in this bacterium, interacts with cognate cell division and genome segregation proteins. Here, we report that deletion of a chromosomal copy of DivIVA was possible only when the wild-type copy of DivIVA was expressed in trans on a plasmid. However, deletion of the C-terminal domain (CTD) of DivIVA (CTD mutant) was possible but produced distinguishable phenotypes, like smaller cells, slower growth, and tilted septum orientation, in D. radiodurans. In trans expression of DivIVA in the CTD mutant could restore these features of the wild type. Interestingly, the overexpression of DivIVA led to delayed separation of tetrads from an octet state in both trans-complemented divIVA-mutant and wild-type cells. The CTD mutant showed upregulation of the yggS-divIVAN operon. Both the wild type and CTD mutant formed FtsZ foci; however, unlike wild type, the position of foci in the mutant cells was found to be away from conjectural midcell position in cocci. Notably, DivIVA-red fluorescent protein (DivIVA-RFP) localizes to the septum during cell division at the new division site. These results suggested that DivIVA is an essential protein in D. radiodurans, and its C-terminal domain plays an important role in the regulation of its expression and orientation of new septal growth in this bacterium. IMPORTANCE In rod-shaped Gram-negative bacteria, the midcell position for binary fission is relatively easy to model. In cocci that do not have predefined poles, the plane of next cell division is shown to be perpendicular to the previous plane. However, the molecular basis of perpendicularity is not known in cocci. The DivIVA protein of Deinococcus radiodurans, a coccus bacterium, physically interacts with the septum and establishes macromolecular interactions with genome segregation proteins through its N-terminal domain and with MinC through the C-terminal domain. Here, we have brought forth some evidence to suggest that DivIVA is essential for growth and plays an important role in cell polarity determination, and its C-terminal domain plays a crucial role in the growth of new septa in the correct orientation as well as in the regulation of DivIVA expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/citología , Deinococcus/metabolismo , Proteínas Bacterianas/genética , División Celular , Polaridad Celular , Deinococcus/genética , Regulación Bacteriana de la Expresión Génica , Operón , Fenotipo
6.
Crit Rev Microbiol ; 47(2): 141-161, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33423591

RESUMEN

Bacterial cell cycle is divided into well-coordinated phases; chromosome duplication and segregation, cell elongation, septum formation, and cytokinesis. The temporal separation of these phases depends upon the growth rates and doubling time in different bacteria. The entire process of cell division starts with the assembly of divisome complex at mid-cell position followed by constriction of the cell wall and septum formation. In the mapping of mid-cell position for septum formation, the gradient of oscillating Min proteins across the poles plays a pivotal role in several bacteria genus. The cues in the cell that defines the poles and plane of cell division are not fully characterized in cocci. Recent studies have shed some lights on molecular interactions at the poles and the underlying mechanisms involved in pole determination in non-cocci. In this review, we have brought forth recent findings on these aspects together, which would suggest a model to explain the mechanisms of pole determination in rod shaped bacteria and could be extrapolated as a working model in cocci.


Asunto(s)
Bacterias/citología , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular , Pared Celular/genética , Pared Celular/metabolismo
7.
Microbiol Res ; 242: 126609, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33059113

RESUMEN

Deinococcus radiodurans, an extremophile, resistant to many abiotic stresses including ionizing radiation, has 2 type I topoisomerases (drTopo IA and drTopo IB) and one type II topoisomerase (DNA gyrase). The role of drTopo IB in guanine quadruplex DNA (G4 DNA) metabolism was demonstrated earlier in vitro. Here, we report that D. radiodurans cells lacking drTopo IB (ΔtopoIB) show sensitivity to G4 DNA binding drug (NMM) under normal growth conditions. The activity of G4 motif containing promoters like mutL and recQ was reduced in the presence of NMM in mutant cells. In mutant, the percentage of anucleate cells was more while the copy number of genome elements were less as compared to wild type. Protein-protein interaction studies showed that drTopo IB interacts with genome segregation and DNA replication initiation (DnaA) proteins. The typical patterns of cellular localization of GFP-PprA were affected in the mutant cells. Microscopic examination of D. radiodurans cells expressing drTopo IB-RFP showed its localization on nucleoid forming a streak parallel to the old division septum and perpendicular to newly formed septum. These results together suggest the role of drTopo IB in genome maintenance in this bacterium.


Asunto(s)
Segregación Cromosómica , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Proteínas Bacterianas/genética , División Celular , Girasa de ADN , ADN-Topoisomerasas de Tipo I/efectos de la radiación , ADN Bacteriano/genética , Deinococcus/efectos de la radiación , Farmacorresistencia Bacteriana , Escherichia coli/genética , G-Cuádruplex , Rayos gamma , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Genes Bacterianos , Genoma Bacteriano , Regiones Promotoras Genéticas , Tolerancia a Radiación
8.
Microbiol Res ; 223-225: 22-32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178048

RESUMEN

The Deinococcus radiodurans multipartite genome consists of 2 chromosomes and 2 plasmids Its genome encodes 4 ParA and 4 ParB proteins on different replicons. Multiple sequence alignments of ParBs encoded on these genome elements showed that ParB of primary chromosome (ParB1) is close to chromosomal type ParB and is found to be different from ParBs encoded on chromosome II (ParB2) and megaplasmid (ParB3) elements. We observed that ParB1, ParB2 and ParB3 exist as dimer in solution and these proteins interact to self but not to its homologs in D. radiodurans, suggesting the specificity in ParBs dimerization. The parB1 deletion mutant showed slow growth under normal condition and relatively reduced resistance to γ-radiation as compared to wild type. The parB2 and parB3 mutants maintained without selection pressure showed loss of radioresistance, which was not observed when maintained with selection pressure. Nearly half of the populations of these mutants showed resistance to antibiotics marked to respective genome elements. Interestingly, all the parB mutants showed increased copy numbers of cognate genome element in cells maintained with antibiotics possibly due to arrest in genome segregation. These results suggested that ParB proteins encoded on multipartite genome system in D. radiodurans form homodimer and not heterodimer with other ParB homologs, and they independently regulate the segregation of respective genome elements. The roles of ParB1 proteins in normal as well as radiation stressed growth of this bacterium have also been ascertained.


Asunto(s)
Proteínas Bacterianas/genética , Deinococcus/genética , Genes Bacterianos/genética , Secuencia de Aminoácidos , Cromosomas Bacterianos/genética , Clonación Molecular , Deinococcus/efectos de la radiación , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Plásmidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Alineación de Secuencia , Eliminación de Secuencia
9.
J Bacteriol ; 201(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235513

RESUMEN

Guanine quadruplex (G4) DNA/RNA are secondary structures that regulate the various cellular processes in both eukaryotes and bacteria. Deinococcus radiodurans, a Gram-positive bacterium known for its extraordinary radioresistance, shows a genomewide occurrence of putative G4 DNA-forming motifs in its GC-rich genome. N-Methyl mesoporphyrin (NMM), a G4 DNA structure-stabilizing drug, did not affect bacterial growth under normal conditions but inhibited the postirradiation recovery of gamma-irradiated cells. Transcriptome sequencing analysis of cells treated with both radiation and NMM showed repression of gamma radiation-responsive gene expression, which was observed in the absence of NMM. Notably, this effect of NMM on the expression of housekeeping genes involved in other cellular processes was not observed. Stabilization of G4 DNA structures mapped at the upstream of recA and in the encoding region of DR_2199 had negatively affected promoter activity in vivo, DNA synthesis in vitro and protein translation in Escherichia coli host. These results suggested that G4 DNA plays an important role in DNA damage response and in the regulation of expression of the DNA repair proteins required for radioresistance in D. radioduransIMPORTANCEDeinococcus radiodurans can recover from extensive DNA damage caused by many genotoxic agents. It lacks LexA/RecA-mediated canonical SOS response. Therefore, the molecular mechanisms underlying the regulation of DNA damage response would be worth investigating in this bacterium. D. radiodurans genome is GC-rich and contains numerous islands of putative guanine quadruplex (G4) DNA structure-forming motifs. Here, we showed that in vivo stabilization of G4 DNA structures can impair DNA damage response processes in D. radiodurans Essential cellular processes such as transcription, DNA synthesis, and protein translation, which are also an integral part of the double-strand DNA break repair pathway, are affected by the arrest of G4 DNA structure dynamics. Thus, the role of DNA secondary structures in DNA damage response and radioresistance is demonstrated.


Asunto(s)
ADN/genética , Deinococcus/efectos de la radiación , G-Cuádruplex , Rayos gamma , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Genoma Bacteriano/efectos de la radiación , Deinococcus/genética
10.
Biochem J ; 476(5): 909-930, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30804051

RESUMEN

Deinococcus radiodurans, an extremely radioresistant bacterium has a multipartite genome system and ploidy. Mechanisms underlying such types of bacterial genome maintenance and its role in extraordinary radioresistance are not known in this bacterium. Chromosome I (Chr I), chromosome II (Chr II) and megaplasmid (Mp) encode its own set of genome partitioning proteins. Here, we have characterized P-loop ATPases of Chr II (ParA2) and Mp (ParA3) and their roles in the maintenance of genome copies and extraordinary radioresistance. Purified ParA2 and ParA3 showed nearly similar polymerization kinetics and interaction patterns with DNA. Electron microscopic examination of purified proteins incubated with DNA showed polymerization on nicked circular dsDNA. ParA2 and ParA3 showed both homotypic and heterotypic interactions to each other, but not with ParA1 (ParA of Chr I). Similarly, ParA2 and ParA3 interacted with ParB2 and ParB3 but not with ParB1 in vivo ParB2 and ParB3 interaction with cis-elements located upstream to the corresponding parAB operon was found to be sequence-specific. Unlike single mutant of parA2 and parA3, their double mutant (ΔparA2ΔParA3) affected copy number of cognate genome elements and resistance to γ-radiation as well as hydrogen peroxide in this bacterium. These results suggested that ParA2 and ParA3 are DNA-binding ATPases producing higher order polymers on DNA and are functionally redundant in the maintenance of secondary genome elements in D. radiodurans The findings also suggest the involvement of secondary genome elements such as Chr II and Mp in the extraordinary radioresistance of D. radiodurans.


Asunto(s)
Proteínas Bacterianas , Cromosomas Bacterianos , ADN Bacteriano , Deinococcus , Plásmidos , Tolerancia a Radiación/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Plásmidos/genética , Plásmidos/metabolismo
11.
Int J Biol Macromol ; 128: 12-21, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30682467

RESUMEN

Unlike in rod-shaped bacteria, cell polarity is not well defined in cocci and possibly gets marked during molecular events around cytokinesis. DivIVA is a member of Min system that is involved in spatial regulation of septum formation in bacteria. Recently, we showed that DivIVA of Deinococcus radiodurans (drDivIVA) interacts with proteins involved in cell division and genome segregation (segrosome). To map drDivIVA domain (s) that interact with these proteins, the N-terminal (DivIVA-N), C-terminal (DivIVA-C) and a middle (DivIVA-M) region/section of drDivIVA were generated. Circular Dichroism (CD) studies suggested that all three variants of drDivIVA fold properly, but they appeared different under transmission electron microscopy (TEM). Full length drDivIVA showed bundles under TEM whereas variants did not. Both full length drDivIVA and N-terminal domain showed repeats of heptad motifs, a characteristic of alpha-helical coiled-coil proteins. DivIVA-N showed dimerization and interaction with segrosome while DivIVA-M interacted with MinC, a cell division regulatory protein. Further, the C-terminal region seems to be crucial for the structural and functional integrity of drDivIVA. These results suggested that drDivIVA dimerizes through its N-terminal domain while both segrosome and MinC interact through different regions of this protein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Deinococcus/fisiología , Deinococcus/efectos de la radiación , Genoma Bacteriano , Multimerización de Proteína , Tolerancia a Radiación , Secuencia de Aminoácidos , División Celular , Dicroismo Circular , Biología Computacional/métodos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas Recombinantes
12.
J Genet ; 97(4): 1013-1038, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30262715

RESUMEN

Bacteria are unicellular organisms that do not show compartmentalization of the genetic material and other cellular organelles as seen in higher organisms. Earlier, bacterial genomes were defined as single circular chromosome and extrachromosomal plasmids. Recently, many bacteria were found harbouringmultipartite genome system and the numbers of copies of genome elements including chromosomes vary from one to several per cell. Interestingly, it is noticed that majority of multipartite genome-harbouring bacteria are either stress tolerant or pathogens. Further, it is observed that the secondary genomes in these bacteria encode proteins that are involved in bacterial genome maintenance and also contribute to higher stress tolerance, and pathogenicity in pathogenic bacteria. Surprisingly, in some bacteria the genes encoding the proteins of classical homologous recombination pathways are present only on the secondary chromosomes, and some do not have either of the classical homologous recombination pathways. This review highlights the presence of ploidy and multipartite genomes in bacterial system, the underlying mechanisms of genome maintenance and the possibilities of these features contributing to higher abiotic and biotic stress tolerance in these bacteria.


Asunto(s)
Bacterias/genética , Genoma Bacteriano/genética , Plásmidos/genética , Cromosomas Bacterianos/genética
14.
Extremophiles ; 20(2): 195-205, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26847200

RESUMEN

The multipartite genome of Deinococcus radiodurans forms toroidal structure. It encodes topoisomerase IB and both the subunits of DNA gyrase (DrGyr) while lacks other bacterial topoisomerases. Recently, PprA a pleiotropic protein involved in radiation resistance in D. radiodurans has been suggested for having roles in cell division and genome maintenance. In vivo interaction of PprA with topoisomerases has also been shown. DrGyr constituted from recombinant gyrase A and gyrase B subunits showed decatenation, relaxation and supercoiling activities. Wild type PprA stimulated DNA relaxation activity while inhibited supercoiling activity of DrGyr. Lysine133 to glutamic acid (K133E) and tryptophane183 to arginine (W183R) replacements resulted loss of DNA binding activity in PprA and that showed very little effect on DrGyr activities in vitro. Interestingly, wild type PprA and its K133E derivative continued interacting with GyrA in vivo while W183R, which formed relatively short oligomers did not interact with GyrA. The size of nucleoid in PprA mutant (1.9564 ± 0.324 µm) was significantly bigger than the wild type (1.6437 ± 0.345 µm). Thus, we showed that DrGyr confers all three activities of bacterial type IIA family DNA topoisomerases, which are differentially regulated by PprA, highlighting the significant role of PprA in DrGyr activity regulation and genome maintenance in D. radiodurans.


Asunto(s)
Proteínas Bacterianas/metabolismo , Girasa de ADN/metabolismo , Deinococcus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Girasa de ADN/química , Girasa de ADN/genética , ADN Ligasas/metabolismo , Deinococcus/genética , Mutación , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
15.
J Biosci ; 40(5): 833-43, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26648029

RESUMEN

Deinococcus radiodurans genome contains a large number of guanine repeats interrupted by a few non-guanine bases, termed G motifs. Some of these G motifs were shown forming guanine quadruplex (G4) DNA structure in vitro. How is the formation and relaxation of G4 DNA regulated in the genome of D. radiodurans is not known and is worth investigating. Here, we showed that the topoisomerase Ib of D. radiodurans (DraTopoIB) could change the electrophoretic mobility of fast migrating intramolecular recF-G4 DNA into the slow migrating species. DraTopoIB also reduced the positive ellipticity in circular diachroism (CD) spectra of intramolecular recF-G4 DNA structures stabilized by K+. On the contrary, when DraTopoIB is incubated with G-motifs annealed without K+, it showed neither any change in electrophoretic mobility nor was ellipticity of the CD spectra affected. DNA synthesis by Taq DNA polymerase through G4 DNA structure was attenuated in the presence of G4 DNA binding drugs, which was abrogated by DraTopoIB. This implies that DraTopoIB could destabilize the G4 DNA structure, which is required for G4 drugs binding and stabilization. Camptothecin treatment inhibited DraTopoIB activity on intramolecular G4 DNA structures. These results suggested that DraTopoIB can relax intramolecular G4 DNA structure in vitro and it may be one such protein that could resolve G4 DNA under normal growth conditions in D. radiodurans.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN Bacteriano/química , Deinococcus/enzimología , G-Cuádruplex , Proteínas Bacterianas/genética , Camptotecina/farmacología , Dicroismo Circular , ADN-Topoisomerasas de Tipo I/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Deinococcus/efectos de los fármacos , Deinococcus/genética , Cloruro de Potasio/química , Inhibidores de Topoisomerasa I/farmacología
16.
Appl Microbiol Biotechnol ; 99(22): 9761-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26201493

RESUMEN

Deinococcus radiodurans displays compromised radioresistance in the presence of guanine quadruplex (G4)-binding drugs (G4 drugs). Genome-wide scanning showed islands of guanine runs (G-motif) in the upstream regions of coding sequences as well as in the structural regions of many genes, indicating a role for G4 DNA in the regulation of genome functions in this bacterium. G-motifs present upstream to some of the DNA damage-responsive genes like lexA, pprI, recF, recQ, mutL and radA were synthesized, and the formation of G4 DNA structures was probed in vitro. The G-motifs present at the 67th position upstream to recQ and at the 121st position upstream to mutL produced parallel and mixed G4 DNA structures, respectively. Expression of ß-galactosidase under recQ and mutL promoters containing respective G-motifs was inhibited by G4 drugs under normal growth conditions in D. radiodurans. However, when such cells were exposed to γ radiation, mutL promoter activity was stimulated while recQ promoter activity was inhibited in the presence of G4 drugs. Deletion of the G-motif from the recQ promoter could relax it from G4 drug repression. D. radiodurans cells treated with G4 drug showed reduction in recQ expression and γ radiation resistance, indicating an involvement of G4 DNA in the radioresistance of this bacterium. These results suggest that G-motifs from D. radiodurans genome form different types of G4 DNA structures at least in vitro, and the recQ and mutL promoters seem to be differentially regulated at the levels of G4 DNA structures.


Asunto(s)
ADN Bacteriano/genética , Deinococcus/genética , G-Cuádruplex , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Regiones Promotoras Genéticas , Deinococcus/efectos de la radiación , Rayos gamma , Conformación de Ácido Nucleico
17.
J Genet ; 93(2): 349-54, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25189229

RESUMEN

PprA, a pleiotropic protein involved in radioresistance of Deinococcus radiodurans was detected in multiprotein DNA processing complex identified from this bacterium. pprA mutant expressing GFP-PprA could restore its wild type resistance of γ radiation. Under normal conditions, GFP-PprA expressing cells showed PprA localization on both septum trapped nucleoids (STN) and nucleoids located elsewhere (MCN). Cell exposed to 4 kGy γ radiation showed nearly 2 h growth lag and during this growth arrest phase, the majority of the cells had GFP-PprA located on MCN. While in late phase (~120 min) PIR cells, when cells are nearly out of growth arrest, PprA was maximally found with STN. These cells when treated with nalidixic acid showed diffused localization of PprA across the septum. gyrA disruption mutant of D. radiodurans showed growth inhibition, which increased further in gyrA pprA mutant. Interestingly, gyrA mutant showed ~20-fold less resistance to γ radiation as compared to wild type, which did increase further in gyrA pprA mutant. These results suggested that PprA localization undergoes a dynamic change during PIR, and its localization on nucleoid near septum and functional interaction with gyrase A might suggest a mechanism that could explain PprA role in genome segregation possibly through topoisomerase II.


Asunto(s)
Proteínas Bacterianas/genética , Girasa de ADN/genética , Deinococcus/genética , Tolerancia a Radiación/genética , Proteínas Bacterianas/fisiología , División Celular , Girasa de ADN/fisiología , Deinococcus/enzimología , Deinococcus/efectos de la radiación , Pleiotropía Genética , Genoma Bacteriano , Transporte de Proteínas
18.
PLoS One ; 9(1): e85288, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454836

RESUMEN

PprA is known to contribute to Deinococcus radiodurans' remarkable capacity to survive a variety of genotoxic assaults. The molecular bases for PprA's role(s) in the maintenance of the damaged D. radiodurans genome are incompletely understood, but PprA is thought to promote D. radiodurans's capacity for DSB repair. PprA is found in a multiprotein DNA processing complex along with an ATP type DNA ligase, and the D. radiodurans toposiomerase IB (DraTopoIB) as well as other proteins. Here, we show that PprA is a key contributor to D. radiodurans resistance to nalidixic acid (Nal), an inhibitor of topoisomerase II. Growth of wild type D. radiodurans and a pprA mutant were similar in the absence of exogenous genotoxic insults; however, the pprA mutant exhibited marked growth delay and a higher frequency of anucleate cells following treatment with DNA-damaging agents. We show that PprA interacts with both DraTopoIB and the Gyrase A subunit (DraGyrA) in vivo and that purified PprA enhances DraTopoIB catalysed relaxation of supercoiled DNA. Thus, besides promoting DNA repair, our findings suggest that PprA also contributes to preserving the integrity of the D. radiodurans genome following DNA damage by interacting with DNA topoisomerases and by facilitating the actions of DraTopoIB.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/fisiología , Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Deinococcus/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano , Ácido Nalidíxico/farmacología , Proteínas Bacterianas/genética , Secuencia de Bases , Cartilla de ADN , Deinococcus/genética , Deinococcus/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Nucleic Acids Res ; 41(1): 76-89, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23161683

RESUMEN

A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4(P)) index we analysed >60,000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4(P). Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4(P) of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ~60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions.


Asunto(s)
Deinococcus/genética , G-Cuádruplex , Regiones Promotoras Genéticas , Tolerancia a Radiación/genética , Metabolismo de los Hidratos de Carbono/genética , ADN Bacteriano/química , Deinococcus/efectos de la radiación , Genes Bacterianos , Genoma Bacteriano , Guanina/química , Ligandos , Motivos de Nucleótidos , Especificidad de la Especie
20.
Carbohydr Polym ; 89(3): 906-13, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24750879

RESUMEN

A simple one-pot method for in situ synthesis of silver nanoparticles (AgNPs), within polyvinyl alcohol/gum acacia (PVA-GA) hydrogel matrix, by gamma radiation-induced cross-linking is reported here. The synthesized hydrogels were characterized by FT-IR, thermogravimetry, dynamic light scattering and inductively coupled mass spectrometry method. The thermal stability was found to be more for the hydrogel loaded with silver nanoparticles and also the percentage silver loading was found to increase with increase in cross-linking density. The influence of gum acacia (GA) concentration on the equilibrium degree of swelling of the synthesized hydrogels, and also on the silver release from hydrogel matrix, was investigated. The size of the silver nanoparticles formed in the hydrogel matrix was in the range of 10-40 nm. The rheological gel point was found to be at 25.34 kGy of radiation dose, for a typical hydrogel synthesized, using 5% GA, 3% PVA and 1mM AgNO3. The antibacterial studies of the synthesized nanosilver-containing hydrogels showed good antibacterial activity against gram-negative bacterium, Escherichia coli.


Asunto(s)
Antibacterianos/farmacología , Hidrogeles/química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/química , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...